

Comparaison de solveurs couplés pour la résolution de systèmes linéaires FEM/BEM résultant de la discrétisation de problèmes aéroacoustiques

Conférence francophone d'informatique en Parallélisme, Architecture et Système COMPAS'21

Emmanuel Agullo, <u>Marek Felšöci</u>, Guillaume Sylvand du 6 au 9 juillet 2021 à Lyon (en virtuel)

Inria Bordeaux Sud-Ouest Équipe-proiet HiePACS

Solveurs rapides pour l'aéroacoustique haute-fréquence

- thèse co-financée par Airbus et la région Nouvelle-Aquitaine
 - encadrée par Guillaume Sylvand¹ et Emmanuel Agullo²
- contexte industriel
 - étude de la propagation des ondes sonores générées par des avions
 - réduction de la pollution sonore, certification d'avions, ...

Figure 1 – Flux d'air généré par un Airbus A319-112 au décolage (Sebaso, Wikimedia Commons, CC BY-SA 4.0)

- 1. Airbus Central R&T / Inria Bordeaux Sud-Ouest
- 2. Inria Bordeaux Sud-Ouest

Modélisation

modélisation de la surface de l'avion et du flux d'air

modèle physique continu o discrétisation o modèle numérique discret

- couplage de deux méthodes de discrétisation
 - FEM³: parties volumiques (flux d'air)
 - BEM ⁴: parties surfaciques (surface d'avion et du domaine volumique)

Figure 2 – Exemple d'un modèle discret FEM/BEM. Le maillage rouge résulte de la discrétisation BEM et le maillage vert résulte de la discrétisation FEM.

- 3. méthode des éléments finis (Finite Elements Method)
- 4. méthode des éléments finis de frontière (Boundary Elements Method)

Couplage FEM/BEM

vers un système linéaire couplé

- matrice de coefficients symétrique composée des parties
 - creuses: discrétisation des parties volumiques avec FEM (A_{vv}), interactions FEM/BEM (A_{vs}, A_{sv})
 - denses : discrétisation des parties surfaciques avec BEM (A_{ss})

$$\begin{bmatrix} A_{vv} & A_{vs} \\ A_{sv} & A_{ss} \end{bmatrix} \times \begin{bmatrix} x_v \\ x_s \end{bmatrix} = \begin{bmatrix} b_v \\ b_s \end{bmatrix}$$

• méthode de résolution directe à l'aide du complément de Schur [4]

Solution directe

réduction du problème aux frontières ightarrow simplification du système

$$\begin{bmatrix} A_{vv} & A_{vs} \\ A_{sv} & A_{ss} \end{bmatrix} \times \begin{bmatrix} x_v \\ x_s \end{bmatrix} = \begin{bmatrix} b_v \\ b_s \end{bmatrix}$$

Principales étapes de résolution

1. éliminer x_v de la seconde équation \rightarrow complément de Schur S

$$\begin{array}{c} R_{\mathbf{1}} \\ R_{\mathbf{2}} \leftarrow R_{\mathbf{2}} - A_{\mathsf{sv}} A_{\mathsf{vv}}^{-1} \times R_{\mathbf{1}} \end{array} \left[\begin{array}{c} A_{\mathsf{vv}} \\ 0 \\ \underbrace{A_{\mathsf{ss}} - A_{\mathsf{sv}} A_{\mathsf{vv}}^{-1} A_{\mathsf{vs}}}_{\mathsf{S}} \end{array} \right] \times \left[\begin{matrix} x_{\mathsf{v}} \\ x_{\mathsf{s}} \end{matrix} \right] = \left[\begin{matrix} b_{\mathsf{v}} \\ b_{\mathsf{s}} - A_{\mathsf{sv}} A_{\mathsf{vv}}^{-1} b_{\mathsf{v}} \end{matrix} \right]$$

2. résoudre le système réduit avec le complément de Schur $ightarrow x_s$

$$\underbrace{(A_{ss} - A_{sv}A_{vv}^{-1}A_{vs})}_{S} x_{s} = b_{s} - A_{sv}A_{vv}^{-1}b_{v}$$

3. calculer $x_v = A_{vv}^{-1}(b_v - A_{vs}x_s)$

4

- schéma à deux étapes (two-stage scheme)
 - couplage d'un solveur creux (MUMPS) et dense (SPIDO, HMAT)
- avantage des solveurs bien optimisés de la communauté

- schéma à deux étapes (two-stage scheme)
 - couplage d'un solveur creux (MUMPS) et dense (SPIDO, HMAT)
- avantage des solveurs bien optimisés de la communauté
- API complément de Schur ightarrow $S = A_{ss} A_{sv}A_{vv}^{-1}A_{sv}^{T}$

- schéma à deux étapes (two-stage scheme)
 - couplage d'un solveur creux (MUMPS) et dense (SPIDO, HMAT)
- avantage des solveurs bien optimisés de la communauté
- API complément de Schur $\rightarrow S = A_{ss} A_{sv}A_{vv}^{-1}A_{sv}^{T}$

- schéma à deux étapes (two-stage scheme)
 - couplage d'un solveur creux (MUMPS) et dense (SPIDO, HMAT)
- avantage des solveurs bien optimisés de la communauté
- API complément de Schur \rightarrow $S = A_{ss} A_{sv}A_{vv}^{-1}A_{sv}^{T}$

Si tout tient en mémoire...

- schéma à deux étapes (two-stage scheme)
 - couplage d'un solveur creux (MUMPS) et dense (SPIDO, HMAT)
- avantage des solveurs bien optimisés de la communauté
- API complément de Schur $o S = A_{ss} A_{sv}A_{vv}^{-1}A_{sv}^T$

Compression, systèmes plus grands?

- stockage de S dense très coûteux en mémoire
 - compression de $S o \mathcal{H}$ -matrice (HMAT)
- adaptation du schéma à deux étapes
 - continuer à utiliser les solveurs de la communauté

Schémas à deux étapes sans compression

Multi-solve

$$S_i = A_{ss_i} - A_{sv} (L_{vv} L_{vv}^T)^{-1} A_{sv_i}^T$$

- 1 factorisation de la matrice verte (symétrique)
- plusieurs solve impliquant les blocs oranges (résultat dense)

Schémas à deux étapes sans compression

Multi-solve

$$S_i = A_{ss_i} - A_{sv} (L_{vv} L_{vv}^T)^{-1} A_{sv_i}^T$$

- 1 factorisation de la matrice verte (symétrique)
- plusieurs solve impliquant les blocs oranges (résultat dense)

Multi-factorization

$$S_{ij} = A_{ss_{ij}} - A_{sv_i} (L_{vv} U_{vv})^{-1} A_{sv_j}^T$$

- plusieurs factorisations de la matrice violette (non-symétrique)
- calcul des blocs de complément de Schur via l'API

Envrionnement expérimental

Cas test

- tube court (longueur : 2 m, diamètre : 4 m)
- systèmes linéaires suffisamment proches des cas réels
 - exemple reproductible pour la communauté [1]
- maillage volumique v discrétisé avec FEM
- maillage surfacique si discrétisé avec BEM

Configuration

- PlaFRIM, un seul nœud miriel (126 Gio de RAM) à la fois
- 24 fils d'exécution OpenMP, MKL et StarPU
- paramètre de précision ϵ fixé à 10^{-3} le cas échéant

Figure 3 - Un cas test de tube court à 20,000 inconnues

Multi-solve vs. multi-factorization sans compression

Figure 4 – Multi-solve

Figure 5 – Multifactorization

Figure 6 – Comparaison des meilleurs temps d'exécution de multi-solve et multi-factorization pour le couplage MUMPS/SPIDO (<u>sans</u> compression) sur des systèmes couplés FEM/BEM comptant jusqu'à 4 000 000 d'inconnues au total.

Multi-solve (sans compression)

Figure 7 -

Figure 8 - Meilleurs temps d'exécution de multi-solve pour le couplage MUMPS/SPIDO (sans compression) sur des systèmes couplés FEM/BEM comptant jusqu'à 4 000 000 d'inconnues au total.

Compression

Multi-solve

$$S_i = A_{ss_i} - A_{sv} (L_{vv} L_{vv}^T)^{-1} A_{sv_i}^T$$

sans compression

Figure 9 - MUMPS/SPIDO

Compression

Multi-solve

$$S_i = A_{ss_i} - A_{sv} (L_{vv} L_{vv}^T)^{-1} A_{sv_i}^T$$

sans compression

Figure 9 - MUMPS/SPIDO

ightarrow avec compression

Figure 10 - MUMPS/HMAT (v1)

Compression

Multi-solve

$$S_i = A_{ss_i} - A_{sv} (L_{vv} L_{vv}^T)^{-1} A_{sv_i}^T$$

sans compression

ightarrow avec compression

Figure 9 - MUMPS/SPIDO

Figure 10 - MUMPS/HMAT (v1)

Figure 11 - MUMPS/HMAT (v2)

Multi-solve (sans vs. avec compression)

Figure 13 – MUMPS/HMAT (v2)

Figure 14 – Comparaison mutuelle des implémentations multi-solve pour les couplages MUMPS/SPIDO (\underline{sans} compression) et MUMPS/HMAT (avec compression, v2) sur des systèmes couplés FEM/BEM comptant 1 000 000 d'inconnues (FEM : 962 831/BEM : 37 169) et en considérant différentes valeurs de n_C et n_S .

Récapitulatif

Schémas à deux étapes (two-stage)

- vers la compression
- multi-solve
 - pas d'utilisation de l'API complément de Schur
 - traitement des problèmes plus grands qu'avec multi-factorization
- multi-factorization
 - plusieurs appels à l'API complément de Schur
 - coût de multiples factorisations très élevé
 - · compression?

Récapitulatif

Multi-solve

- MUMPS/SPIDO (sans compression) vs. MUMPS/HMAT (avec compression)
- ullet capacité de mémoire vive suffisante o exécution plus rapide
- ullet compression de rang faible dans HMAT o empreinte mémoire plus faible
 - traitement de problèmes plus grands qu'avec MUMPS/SPIDO?
 - plus vite?

Pour la suite...

- étendre l'étude centrée sur la consommation mémoire vers multi-factorization
- évaluer l'impact du calcul *out-of-core*
- passer les tests de performance à l'échelle ightarrow plusieurs nœuds de calcul

Récapitulatif

Nos contributions récentes dans le domaine

- une comparaison des implémentations existantes de solveurs pour la résolution des systèmes couplés FEM/BEM
 - rapport de recherche montrant les résultats expérimentaux [2]
 - rapport technique décrivant l'envionnement expérimental et le processus pour reproduire toutes les expériences [3]

Merci pour votre attention!

Avez-vous des questions?

- test_FEMBEM, a simple application for testing dense and sparse solvers with pseudo-FEM or pseudo-BEM matrices.
 - https://gitlab.inria.fr/solverstack/test_fembem.
- [2] E. Agullo, M. Felšöci, and G. Sylvand, A comparison of selected solvers for coupled FEM/BEM linear systems arising from discretization of aeroacoustic problems, Research Report RR-9412, Inria Bordeaux Sud-Ouest, June 2021.
- [3] —, A comparison of selected solvers for coupled FEM/BEM linear systems arising from discretization of aeroacoustic problems: literate and reproducible environment, Technical Report RT-0513, Inria Bordeaux Sud-Ouest, June 2021.
- [4] G. Golub and C. Van Loan, Matrix computations, vol. 3, Johns Hopkins University Press, 1996.